La misma se realizó el día 7/4/2011 y los temas a evaluar fueron:
*Movimiento Armónico Simple
*Ondas
*Sonido (Teórico)
[,.-~*´¨¯¨`*·~-.¸-(_Física_)-,.-~*´¨¯¨`*·~-.¸]
martes, 12 de abril de 2011
viernes, 1 de abril de 2011
Ondas
En física, una onda es una propagación de una perturbación de alguna propiedad de un medio, por ejemplo, densidad, presión, campo eléctrico o campo magnético, que se propaga a través del espacio transportando energía. El medio perturbado puede ser de naturaleza diversa como aire, agua, un trozo de metal o el vacío.
La propiedad del medio en la que se observa la particularidad se expresa como una función tanto de la posición como del tiempo . Matemáticamente se dice que dicha función es una onda si verifica la ecuación de ondas:
Elementos de una Onda
Las ondas periódicas están caracterizadas por crestas/montes y valles, y usualmente es categorizada como longitudinal o transversal. Una onda transversal son aquellas con las vibraciones perpendiculares a la dirección de propagación de la onda; ejemplos incluyen ondas en una cuerda y ondas electromagnéticas. Ondas longitudinales son aquellas con vibraciones paralelas en la dirección de la propagación de las ondas; ejemplos incluyen ondas sonoras.
Cuando un objeto corte hacia arriba y abajo en una onda en un estanque, experimenta una trayectoria orbital porque las ondas no son simples ondas transversales sinusoidales.
Ondas en la superficie de una cuba son realmente una combinación de ondas transversales y longitudinales; por lo tanto, los puntos en la superficie siguen caminos orbitales.
Todas las ondas tiene un comportamiento común bajo un número de situaciones estándar. Todas las ondas pueden experimentar las siguientes:
Desde un punto de vista matemático, la onda más sencilla o fundamental es el armónico (sinusoidal) la cual es descrita por la ecuación f(x,t) = Asin(ωt − kx)), donde A es la amplitud de una onda - una medida de máximo vacío en el medio durante un ciclo de onda (la distancia máxima desde el punto más alto del monte al equilibrio). En la ilustración de la derecha, esta es la distancia máxima vertical entre la base y la onda. Las unidades de amplitud dependen del tipo de onda — las ondas en una cuerda tienen una amplitud expresada como una distancia (metros), las ondas sonoras como presión (pascales) y ondas electromagnéticas como la amplitud del campo eléctrico (voltios/metros). La amplitud puede ser constante, o puede variar con el tiempo y/o posición. La forma de la variación de amplitud es llamada la envolvente de la onda.
La longitud de onda (simbolizada por λ) es la distancia entre dos montes o valles seguidos. Suele medirse en metros, aunque en óptica es más común usar los nanómetros o los Angstroms (Å).
Un número de onda angular k puede ser asociado con la longitud de onda por la relación:
El periodo T es el tiempo requerido para que el movimiento de oscilación de la onda describa un ciclo completo. La frecuencia f es el número de ciclos completos transcurridos en la unidad de tiempo (por ejemplo, un segundo). Es medida en hercios. Matemáticamente se define sin ambigüedad como:
La frecuencia angular ω representa la frecuencia en radianes por segundo. Está relacionada con la frecuencia por
Hay dos velocidades diferentes asociadas a las ondas. La primera es la velocidad de fase, la cual indica la tasa con la que la onda se propaga, y esta dada por:
La segunda es la velocidad de grupo, la cual da la velocidad con la que las variaciones en la forma de la amplitud de la onda se propagan por el espacio. Esta es la tasa a la cual la información puede ser transmitida por la onda. Está dada por:
La velocidad v depende del tipo de onda y del medio a través del cual viaja.
Jean Le Rond d'Alembert obtuvo una solución general para la ecuación de onda en una dimensión:
La ecuación de Schrödinger describe el comportamiento ondulatorio de las partículas elementales. Las soluciones de esta ecuación son funciones de ondas que pueden emplearse para hallar la densidad de probabilidad de una partícula.
La suma de dos ondas que se propagan en sentidos opuestos, con idéntica amplitud y frecuencia, dan lugar a una onda estacionaria. Las ondas estacionarias normalmente aparecen cuando una frontera bloquea la propagación de una onda viajera (como los extremos de una cuerda, o el bordillo de una piscina, más allá de los cuales la onda no puede propagarse). Esto provoca que la onda sea reflejada en sentido opuesto e interfiera con la onda inicial, dando lugar a una onda estacionaria. Por ejemplo, cuando se rasga la cuerda de un violín, se generan ondas transversales que se propagan en direcciones opuestas por toda la cuerda hasta llegar a los extremos. Una vez aquí son reflejadas de vuelta hasta que interfieren la una con la otra dando lugar a una onda estacionaria, que es lo que produce su sonido característico.
Las ondas estacionarias se caracterizan por presentar regiones donde la amplitud es nula (nodos), y regiones donde es máxima (vientres). La distancia entre dos nodos o vientres consecutivos es justamente λ / 2, donde λ es la longitud de onda de la onda estacionaria.
Al contrario que en las ondas viajeras, en las ondas estacionarias no se produce propagación neta de energía.
En física, una onda es una propagación de una perturbación de alguna propiedad de un medio, por ejemplo, densidad, presión, campo eléctrico o campo magnético, que se propaga a través del espacio transportando energía. El medio perturbado puede ser de naturaleza diversa como aire, agua, un trozo de metal o el vacío.
La propiedad del medio en la que se observa la particularidad se expresa como una función tanto de la posición como del tiempo . Matemáticamente se dice que dicha función es una onda si verifica la ecuación de ondas:
Elementos de una Onda
- Cresta: La cresta es el punto más alto de dicha amplitud o punto máximo de saturación de la onda.
- Período: El periodo es el tiempo que tarda la onda de ir de un punto de máxima amplitud al siguiente.
- Amplitud: La amplitud es la distancia vertical entre una cresta y el punto medio de la onda. Nótese que pueden existir ondas cuya amplitud sea variable, es decir, crezca o decrezca con el paso del tiempo.
- Frecuencia: Número de veces que es repetida dicha vibración. En otras palabras, es una simple repetición de valores por un período determinado.
- Valle: Es el punto más bajo de una onda.
- Longitud de onda: Distancia que hay entre dos crestas consecutivas de dicho tamaño
Las ondas periódicas están caracterizadas por crestas/montes y valles, y usualmente es categorizada como longitudinal o transversal. Una onda transversal son aquellas con las vibraciones perpendiculares a la dirección de propagación de la onda; ejemplos incluyen ondas en una cuerda y ondas electromagnéticas. Ondas longitudinales son aquellas con vibraciones paralelas en la dirección de la propagación de las ondas; ejemplos incluyen ondas sonoras.
Cuando un objeto corte hacia arriba y abajo en una onda en un estanque, experimenta una trayectoria orbital porque las ondas no son simples ondas transversales sinusoidales.
Ondas en la superficie de una cuba son realmente una combinación de ondas transversales y longitudinales; por lo tanto, los puntos en la superficie siguen caminos orbitales.
Todas las ondas tiene un comportamiento común bajo un número de situaciones estándar. Todas las ondas pueden experimentar las siguientes:
- Difracción - Ocurre cuando una onda al topar con el borde de un obstáculo deja de ir en línea recta para rodearlo.
- Efecto Doppler - Efecto debido al movimiento relativo entre la fuente emisora de las ondas y el receptor de las mismas.
- Interferencia - Ocurre cuando dos ondas se combinan al encontrarse en el mismo punto del espacio.
- Reflexión - Ocurre cuando una onda, al encontrarse con un nuevo medio que no puede atravesar, cambia de dirección.
- Refracción - Ocurre cuando una onda cambia de dirección al entrar en un nuevo medio en el que viaja a distinta velocidad.
- Onda de choque - Ocurre cuando varias ondas que viajan en un medio se superponen formando un cono.
Desde un punto de vista matemático, la onda más sencilla o fundamental es el armónico (sinusoidal) la cual es descrita por la ecuación f(x,t) = Asin(ωt − kx)), donde A es la amplitud de una onda - una medida de máximo vacío en el medio durante un ciclo de onda (la distancia máxima desde el punto más alto del monte al equilibrio). En la ilustración de la derecha, esta es la distancia máxima vertical entre la base y la onda. Las unidades de amplitud dependen del tipo de onda — las ondas en una cuerda tienen una amplitud expresada como una distancia (metros), las ondas sonoras como presión (pascales) y ondas electromagnéticas como la amplitud del campo eléctrico (voltios/metros). La amplitud puede ser constante, o puede variar con el tiempo y/o posición. La forma de la variación de amplitud es llamada la envolvente de la onda.
La longitud de onda (simbolizada por λ) es la distancia entre dos montes o valles seguidos. Suele medirse en metros, aunque en óptica es más común usar los nanómetros o los Angstroms (Å).
Un número de onda angular k puede ser asociado con la longitud de onda por la relación:
El periodo T es el tiempo requerido para que el movimiento de oscilación de la onda describa un ciclo completo. La frecuencia f es el número de ciclos completos transcurridos en la unidad de tiempo (por ejemplo, un segundo). Es medida en hercios. Matemáticamente se define sin ambigüedad como:
La frecuencia angular ω representa la frecuencia en radianes por segundo. Está relacionada con la frecuencia por
Hay dos velocidades diferentes asociadas a las ondas. La primera es la velocidad de fase, la cual indica la tasa con la que la onda se propaga, y esta dada por:
La segunda es la velocidad de grupo, la cual da la velocidad con la que las variaciones en la forma de la amplitud de la onda se propagan por el espacio. Esta es la tasa a la cual la información puede ser transmitida por la onda. Está dada por:
Ecuación de onda
La ecuación de onda es un tipo de ecuación diferencial que describe la evolución de una onda armónica simple a lo largo del tiempo. Esta ecuación presenta ligeras variantes dependiendo de como se transmite la onda, y del medio a través del cual se propaga. Si consideramos una onda unidimensional que se transmite a lo largo de una cuerda en el eje x, a una velocidad v y con una amplitud u (que generalmente depende tanto de x y de t), la ecuación de onda es:La velocidad v depende del tipo de onda y del medio a través del cual viaja.
Jean Le Rond d'Alembert obtuvo una solución general para la ecuación de onda en una dimensión:
La ecuación de Schrödinger describe el comportamiento ondulatorio de las partículas elementales. Las soluciones de esta ecuación son funciones de ondas que pueden emplearse para hallar la densidad de probabilidad de una partícula.
Ondas Simple
es una perturbación que varía tanto con el tiempo t como con la distancia z de la siguiente manera:Onda estacionaria
Una onda estacionaria es aquella que permanece fija, sin propagarse a través del medio. Este fenómeno puede darse, bien cuando el medio se mueve en sentido opuesto al de propagación de la onda, o bien puede aparecer en un medio estático como resultado de la interferencia entre dos ondas que viajan en sentidos opuestos.La suma de dos ondas que se propagan en sentidos opuestos, con idéntica amplitud y frecuencia, dan lugar a una onda estacionaria. Las ondas estacionarias normalmente aparecen cuando una frontera bloquea la propagación de una onda viajera (como los extremos de una cuerda, o el bordillo de una piscina, más allá de los cuales la onda no puede propagarse). Esto provoca que la onda sea reflejada en sentido opuesto e interfiera con la onda inicial, dando lugar a una onda estacionaria. Por ejemplo, cuando se rasga la cuerda de un violín, se generan ondas transversales que se propagan en direcciones opuestas por toda la cuerda hasta llegar a los extremos. Una vez aquí son reflejadas de vuelta hasta que interfieren la una con la otra dando lugar a una onda estacionaria, que es lo que produce su sonido característico.
Las ondas estacionarias se caracterizan por presentar regiones donde la amplitud es nula (nodos), y regiones donde es máxima (vientres). La distancia entre dos nodos o vientres consecutivos es justamente λ / 2, donde λ es la longitud de onda de la onda estacionaria.
Al contrario que en las ondas viajeras, en las ondas estacionarias no se produce propagación neta de energía.
Propagación en cuerdas
La velocidad de una onda viajando a través de una cuerda en vibración (v) es directamente proporcional a la raíz cuadrada de la tensión de la cuerda (T) por su densidad lineal (μ):Clasificación de las ondas
Las ondas se clasifican atendiendo a diferentes aspectos:En función del medio en el que se propagan
- Ondas mecánicas: las ondas mecánicas necesitan un medio elástico (sólido, líquido o gaseoso) para propagarse. Las partículas del medio oscilan alrededor de un punto fijo, por lo que no existe transporte neto de materia a través del medio. Como en el caso de una alfombra o un látigo cuyo extremo se sacude, la alfombra no se desplaza, sin embargo una onda se propaga a través de ella. La velocidad puede ser afectada por algunas características del medio como: la homogeneidad, la elasticidad, la densidad y la temperatura. Dentro de las ondas mecánicas tenemos las ondas elásticas, las ondas sonoras y las ondas de gravedad.
- Ondas electromagnéticas: las ondas electromagnéticas se propagan por el espacio sin necesidad de un medio, pudiendo por lo tanto propagarse en el vacío. Esto es debido a que las ondas electromagnéticas son producidas por las oscilaciones de un campo eléctrico, en relación con un campo magnético asociado. Las ondas electromagnéticas viajan aproximadamente a una velocidad de 300000 km por segundo, de acuerdo a la velocidad puede ser agrupado en rango de frecuencia. Este ordenamiento es conocido como Espectro Electromagnético, objeto que mide la frecuencia de las ondas.
- Ondas gravitacionales: las ondas gravitacionales son perturbaciones que alteran la geometría misma del espacio-tiempo y aunque es común representarlas viajando en el vacío, técnicamente no podemos afirmar que se desplacen por ningún espacio, sino que en sí mismas son alteraciones del espacio-tiempo.
En función de su propagación o frente de onda
- Ondas unidimensionales: las ondas unidimensionales son aquellas que se propagan a lo largo de una sola dirección del espacio, como las ondas en los muelles o en las cuerdas. Si la onda se propaga en una dirección única, sus frentes de onda son planos y paralelos.
- Ondas bidimensionales o superficiales: son ondas que se propagan en dos direcciones. Pueden propagarse, en cualquiera de las direcciones de una superficie, por ello, se denominan también ondas superficiales. Un ejemplo son las ondas que se producen en una superficie líquida en reposo cuando, por ejemplo, se deja caer una piedra en ella.
- Ondas tridimensionales o esféricas: son ondas que se propagan en tres direcciones. Las ondas tridimensionales se conocen también como ondas esféricas, porque sus frentes de ondas son esferas concéntricas que salen de la fuente de perturbación expandiéndose en todas direcciones. El sonido es una onda tridimensional. Son ondas tridimensionales las ondas sonoras (mecánicas) y las ondas electromagnéticas.
En función de la dirección de la perturbación
- Ondas longitudinales: son aquellas que se caracterizan porque las partículas del medio se mueven (ó vibran) paralelamente a la dirección de propagación de la onda. Por ejemplo, un muelle que se comprime da lugar a una onda longitudinal.
- Ondas transversales: son aquellas que se caracterizan porque las partículas del medio vibran perpendicularmente a la dirección de propagación de la onda.
En función de su periodicidad
- Ondas periódicas: la perturbación local que las origina se produce en ciclos repetitivos por ejemplo una onda senoidal.
- Ondas no periódicas: la perturbación que las origina se da aisladamente o, en el caso de que se repita, las perturbaciones sucesivas tienen características diferentes. Las ondas aisladas también se denominan pulsos.
Movimiento Armónico Simple (M.A.S)
Movimiento Armónico Simple (M.A.S)
El estudio del oscilador armónico constituye en Física un capítulo muy importante, ya que son muchos los sistemas físicos oscilantes que se dan en la naturaleza y que han sido producidos por el hombre.
x=A·sen(ωt+φ)
donde
La posición del móvil que describe un M.A.S. en función del tiempo viene dada por la ecuación
x=A·sen(ωt+φ)
Derivando con respecto al tiempo, obtenemos la velocidad del móvil
Derivando de nuevo respecto del tiempo, obtenemos la aceleración del móvil
Este resultado se suele expresar en forma de ecuación diferencial
Esta es la ecuación diferencial de un MAS donde x puede ser cualquier magnitud: un desplazamiento lineal, un desplazamiento angular, la carga de un condensador, una temperatura, etc.
Puede comprobarse que la solución de esta ecuación diferencial es
x=A
Condiciones iniciales
Conociendo la posición inicial x0 y la velocidad inicial v0 en el instante t=0.
x0=A·senj
v0=Aw·cosj
se determinan la amplitud A y la fase inicial φ
sen(w t+j )
El estudio del oscilador armónico constituye en Física un capítulo muy importante, ya que son muchos los sistemas físicos oscilantes que se dan en la naturaleza y que han sido producidos por el hombre.
Definición
Una partícula describe un Movimiento Armónico Simple (M.A.S.) cuando se mueve a lo largo del eje X, estando su posición x dada en función del tiempo t por la ecuaciónx=A·sen(ωt+φ)
donde
Las características de un M.A.S. son:
- A es la amplitud.
- w la frecuencia angular.
- w t+j la fase.
- j la fase inicial.
- Como los valores máximo y mínimo de la función seno son +1 y -1, el movimiento se realiza en una región del eje X comprendida entre -A y +A.
- La función seno es periódica y se repite cada 2p, por tanto, el movimiento se repite cuando el argumento de la función seno se incrementa en 2p, es decir, cuando transcurre un tiempo P tal que w(t+P)+j=w t+j+2p .
P=2π/ω
Cinemática de un M.A.S.
En un movimiento rectilíneo, dada la posición de un móvil, obtenemos la velocidad derivando respecto del tiempo y luego, la aceleración derivando la expresión de la velocidad.La posición del móvil que describe un M.A.S. en función del tiempo viene dada por la ecuación
x=A·sen(ωt+φ)
Derivando con respecto al tiempo, obtenemos la velocidad del móvil
Derivando de nuevo respecto del tiempo, obtenemos la aceleración del móvil
Este resultado se suele expresar en forma de ecuación diferencial
Esta es la ecuación diferencial de un MAS donde x puede ser cualquier magnitud: un desplazamiento lineal, un desplazamiento angular, la carga de un condensador, una temperatura, etc.
Puede comprobarse que la solución de esta ecuación diferencial es
x=A
Condiciones iniciales
Conociendo la posición inicial x0 y la velocidad inicial v0 en el instante t=0.
x0=A·senj
v0=Aw·cosj
se determinan la amplitud A y la fase inicial φ
sen(w t+j )
Suscribirse a:
Entradas (Atom)